
 

Aquatic Invasions (2013) Volume 8, Issue 3: 319–332 
doi:  http://dx.doi.org/10.3391/ai.2013.8.3.08 
© 2013 The Author(s). Journal compilation © 2013 REABIC 

 

Open Access 
 

 

 319

Research Article 

Is a rapid expansion of the invasive amphipod Gammarus tigrinus Sexton, 1939 
associated with its niche selection: a case study in the Gulf of Finland, the Baltic Sea 

Jonne Kotta1*, Merli Pärnoja1, Tarja Katajisto2, Maiju Lehtiniemi2, Stanislaw A. Malavin3, Greta Reisalu1 
and Vadim E. Panov4,5 

1 Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia 

2 Finnish Environment Institute, Marine Research Centre, P.O. Box 140, FI-00251 Helsinki, Finland 

3 Institute of Limnology RAS, St. Petersburg, Russian Federation 

4 Regional Euro-Asian Biological Invasions Centre (REABIC), PL 3, FI-00981 Helsinki, Finland 

5 St. Petersburg State University, St. Petersburg, Russian Federation 

E-mail: jonne@sea.ee (JK), merli.parnoja@ut.ee (MP), tarja.katajisto@environment.fi (TK), maiju.lehtiniemi@environment.fi (ML), 
stas.malavin@gmail.com (SM), greta.reisalu@ut.ee (GR), vepanov@gmail.com (VP) 

*Corresponding author 

Received: 9 February 2013 / Accepted: 18 June 2013 / Published online: 6 July 2013 

Handling editor: Jaimie Dick 

Abstract 

Among the recent non-indigenous species the gammarid amphipod Gammarus tigrinus is one of the more aggressive invaders in the Baltic 
Sea. Quantitative sampling of the shallow water habitats of the Gulf of Finland showed that G. tigrinus has become established in the whole 
coastal zone of the Gulf. Boosted Regression Trees modelling indicated that the abundance and biomass of G. tigrinus varied as a function of 
wave exposure, water salinity and transparency, with the invasive amphipod having higher abundance and biomass at less exposed, more 
dilute, and more turbid sites. Gammarus tigrinus appears to be competitively superior to the native gammarids, possibly leading to further 
decline of the native gammarid populations in the Gulf of Finland. 
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Introduction 

Recently, the Baltic Sea, especially in its northern 
portion, has witnessed an unprecedented increase 
in the number of biological invasions. Although 
the exact cause of such a situation is unknown, 
the evidence suggests an intensified or modified 
invasion vector associated with ballast water and 
hull fouling. The recent invaders include many 
mobile phytophilous benthic macroinvertebrates 
such as the gammarid amphipod Gammarus 
tigrinus Sexton, 1939, the palaemonid shrimp 
Palaemon elegans Rathke, 1837, and the mudcrab 
Rhithropanopeus harrisii (Gould, 1841). All the 
species have rapidly increased their population 
densities, expanded their distribution area, and thus 
formed permanent populations (Berezina 2007; 
Packalén et al. 2008; Herkül et al. 2009; Kotta and 

Kuprijanov 2012; Kotta and Ojaveer 2012; Katajisto 
et al. 2013). Besides, the Chinese mitten crab 
Eriocheir sinensis (H. Milne-Edwards, 1853) and 
some other non-indigenous species appear to 
have increased in abundance in recent years in 
the northeastern part of the Baltic Sea (e.g. 
Ojaveer et al. 2007, 2011). Such invasions have 
been shown to trigger major shifts in benthic and 
pelagic communities (e.g. Kotta et al. 2004; Kotta 
et al. 2006; Põllumäe et al. 2007; Ojaveer et al. 
2011). 

Among the recent non-indigenous species, the 
gammarid amphipod G. tigrinus is seemingly one 
of the most aggressive invaders. Recent 
experimental evidence indicates the species has a 
strong potential to modify benthic community 
structure and functioning in the whole coastal 
zone of the northern Baltic Sea (Orav-Kotta et al. 
2009; Kotta et al. 2010, 2011, 2013; Sareyka et al. 
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2011). These recent studies show that G. tigrinus 
is competitively superior over all native 
amphipods except Gammarus duebeni Liljeborg, 
1852 (see also e.g. MacNeil et al. 2003). The 
mechanisms through which competitive advantage 
is gained are as follows: G. tigrinus has a strong 
tolerance to adverse environmental conditions; it 
has a large brood size (Sareyka et al. 2011); and 
the species is behaviourly aggressive towards the 
native gammarids (Orav-Kotta et al. 2009). In 
fact, a co-occurrence of G. tigrinus with native 
gammarids increases exposure of native species 
to fish predation, especially in pebble habitat, 
and G. tigrinus can eventually outcompete the 
native gammarids in this habitat (Kotta et al. 
2010). 

It is surprising that despite of good knowledge 
on the ecological role of G. tigrinus in the Baltic 
Sea ecosystem, we know little of how variability 
in the environment shapes the distribution 
pattern of this invasive amphipod. Most studies 
report local distribution patterns of G. tigrinus 
(e.g. Jazdzewski et al. 2002; Jazdzewski et al. 2004; 
Szaniawska et al. 2003; Daunys and Zettler, 2006; 
Grabowski et al. 2006; Herkül and Kotta 2007; 
Packalén et al. 2008; Surowiec and Dobrzycka-
Krahel 2008; Dobrzycka-Krahel et al. 2012; Strode 
et al. 2013) and increased observation frequency of 
the species in time (Ojaveer et al. 2011). Studies 
from outside of the Baltic Sea area report 
G. tigrinus has a wide tolerance of adverse 
environmental conditions (Pinkster et al. 1977; 
Wijnhoven et al. 2003; Devin and Beisel 2007) 
and low habitat selectivity (Bousfield 1973). 
Indeed, earlier experiments demonstrate that G. 
tigrinus tolerates very wide salinity ranges in 
estuaries (Normant et al. 2007) and in salt-
polluted rivers (Koop and Grieshaber 2000). G. 
tigrinus was also experimentally shown to 
tolerate better oxygen depletion and heat stress 
compared to native gammarids (Sareyka et al. 
2011). And ultimately, G. tigrinus has a large 
brood size and the species mature at a smaller 
size and earlier than the native gammarids 
(Sareyka et al. 2011). This allows us to conclude 
that G. tigrinus has a broad niche space and thus 
very strong invasion potential. 

Ecological niche modelling, alternatively known 
as species distribution or predictive habitat 
distribution modelling, has been widely used to 
investigate the potential habitat range of species. 
Environmental niche modeling applies complex 
computer algorithms to predict the distribution 
of species in geographic space on the basis of a 
mathematical representation of their known 

distribution in environmental space (Morin and 
Thuiller 2009). Recently it has been shown that 
machine learning has high potential to become a 
leader in the field of ecological niche modelling 
(e.g. Lorena et al. 2008). To date, among machine 
learning algorithms, the novel predictive modelling 
technique called Boosted Regression Trees (BRT) 
performs best in terms of predictive validity and 
adequate descriptions of "reality“ (Elith et al. 
2006). Although correlative, the BRT modelling 
represents a sophisticated tool to improve our 
understanding on the relationships between 
environment and biota. Recently, Ba et al. (2010) 
used ecological niche modelling (not machine 
learning, though) to analyze the invasive potential 
of G. tigrinus. The algorithm they used sought 
nonrandom associations between environmental 
layers and presence of G. tigrinus, and predicted 
the global occurrence of the invasive amphipod. 
Due to the global approach, however, the study 
could not possibly involve the key environmental 
variables defining the patterns of fine and 
landscape-scale distribution of G. tigrinus (e.g. sali-
nity, sediment characteristics, primary productivity); 
rather, they only showed its invasive potential 
based associations with air temperature, 
precipitation, and broad scale topography. 

In the current study we sampled the shallow 
water benthic communities all around the Gulf of 
Finland to cover wide gradients in salinity, 
exposure to waves, and eutrophication. Using the 
novel machine learning algorithm (BRT), we 
quantified how the abundance and biomass of 
G. tigrinus related to the key environmental 
variables and how the distribution pattern of 
G. tigrinus was related to other invasive and 
native species of the Gulf of Finland. In 
particular, we expected the following:  

(1) The populations of G. tigrinus have high 
densities in sheltered areas characterised by 
mixed bottoms and lush vegetation;  

(2) G. tigrinus benefits from elevated nutrient 
levels because eutrophied ecosystems are 
characterised by high food levels; 

(3) The link between eutrophication and 
G. tigrinus population development is weaker in 
exposed areas than in sheltered areas;  

(4) Owing to its wide salinity tolerance, 
G. tigrinus is relatively unresponsive to changes 
in salinity; 

(5) Due to strong antagonistic interactions 
between the invasive and native gammarids, the 
populations of native gammarids are depressed 
in areas invaded by G. tigrinus. 
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Figure 1. Sampling stations 
in the Gulf of Finland (see 
details in Appendix 1). 

 

Material and methods 

Study area 

The shallow water benthic habitats of the Gulf of 
Finland are diverse spanning from granite 
bedrock and sandy shores in its western parts to 
silty reed bottoms in its eastern parts. Compared 
to other basins in the Baltic Sea, the Gulf of 
Finland has a relatively large catchment area and 
the greatest freshwater inflow. Therefore the 
Gulf has a strong horizontal salinity gradient. 
The surface salinity varies from 0 in its eastern 
end to 7 in the western parts (Leppäranta and 
Myrberg 2009). Near the bottom, the salinity 
increases from 5 in the eastern parts to approxi-
mately 10 in the western parts. Consequently, the 
western Gulf of Finland is characterised by algal 
communities of marine origin whereas the 
eastern Gulf is dominated by either freshwater 
algae or higher plants. The monthly average 
seawater temperature varies from 0 to 15 °C. The 
Gulf is among the most nutrient enriched basins 
in the Baltic Sea area with its more eutrophied 
areas located in the easternmost part of the Gulf 
(Pitkänen et al. 2007). Gammarid amphipods can 
be found all over the region, though, with 
different species and relative proportions in 
different communities. 

Sample collection 

The benthic community sampling and sample 
analysis followed the guidelines developed for 
the HELCOM COMBINE programme (HELCOM 
1999). Along the Estonian shores of the Gulf of 
Finland an Ekman-type bottom grab sampler 
(0.02 m2) was used on soft sediment, and a diver-
operated metal frame (0.04 m2) was used to collect 
samples on hard substrate. In general, three 
replicate samples were taken in each station. In 
Finnish and Russian waters quantitative sampling 
was carried out with a cylindrical corer (0.03 m2) 
in two to five replicates. A total of 47 stations 
were sampled in summers 2010 and 2011 (Figure 
1). During sampling the geographic coordinates, 
depth, and sediment types were recorded 
(Appendix 1).  

Benthic samples were sieved through a 0.25 
mm mesh and the residue was placed in plastic 
bags. Samples were preserved in a deep freezer 
at -20 °C in Estonia and in a 4% formalin solution 
in Finland and Russia. In the laboratory, all 
macroinvertebrate and macrophyte species were 
identified in the samples (See amphipod species 
in Appendix 2). Wet weights were recorded for 
the Finnish and Russian samples and then the 
wet weights were converted into dry weights based 
on the known relationship between species-specific 
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wet and dry weights. For the Estonian samples 
dry weights of all taxa were obtained after keeping 
the material 2 weeks at 60 °C. 

Supporting environmental variables  

The annual average of water temperature, salinity 
and current velocity were obtained from the 
results of hydrodynamic model calculations from 
the early April 2010 to the early August 2011 
(Figure 2). The calculations were based on the 
COHERENS model (Luyten et al. 1999), which is 
a three-dimensional ocean circulation model. The 
model has a modular structure allowing users to 
select different processes, specific schemes and 
different types of forcing for a particular 
application. It was formulated with spherical 
coordinates on a horizontal grid of 1 × 1 nautical 
miles and 30 vertical sigma layers. The model 
was forced with hourly meteorological fields of air 
temperature at a height of 2 m, wind speed, wind 
stress vector, cloud cover and relative humidity. 
The meteorological fields were obtained from an 
operational atmospheric model (Brandt et al. 2001). 
The model was validated against water level, 
temperature, salinity and water velocity measure-
ments from the study area (Bendtsen et al. 2009). 

The Simplified Wave Model method was used 
to calculate the wave exposure for mean wind 
conditions represented by hourly wind data for 
period 2002−2007 (Isæus 2004). A nested-grids 
technique was used to take into account long-
distance effects on the local wave exposure 
regime. The resulting grids had a resolution of 
25 m. In the modelling the shoreline was divided 
into suitable calculation areas, fetch and wave 
exposure grids were calculated and subsequently 
the separate grids were integrated into a seamless 
description of wave exposure along the study 
area (Figure 3). This method results in a pattern 
where the fetch values are smoothed out to the 
sides and around island and skerries, in a similar 
way that refraction and diffraction make waves 
deflect around islands. 

As a proxy of eutrophication we used the MODIS 
satellite derived water attenuation coefficient (Kd) 
and water chlorophyll a values in 2010−2011 
(Figure 3). The MODIS data was obtained from 
http://www.myocean.eu/ . The frequency of satellite 
observations was generally once a week over the 
whole ice-free period; however, several 
observations were discarded due to cloudiness. 
The spatial resolution of satellite data was 1 km. 
False zeroes were removed from the data prior to 
the statistical analysis. 

 

Figure 2. Modelled annual averages of water temperature (°C), 
salinity and current velocity (cm s-1) in the Gulf of Finland. 

 
Figure 3. Wave exposure (m2 s-1), surface chlorophyll a (mg m-3) 
and water attenuation coefficient (Kd). 
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Statistical analyses 

Ecological understanding is a prerequisite when 
it comes to selecting model environmental 
variables. It is plausible that traditional statistical 
modelling may not be the most rewarding way to 
disentangle the environment−species relationships 
as it starts by assuming an appropriate data 
model and the model parameters are then 
estimated from the data. By contrast, machine 
learning avoids starting with a data model and 
rather uses an algorithm to learn the relationship 
between the response and its predictors (Hastie et 
al. 2009). The novel predictive modelling techniques 
called Boosted Regression Trees (BRT) combine 
the strength of machine learning and statistical 
modelling. The BRT iteratively develop a large 
ensemble of small regression trees constructed 
from random subsets of both the numerical and 
categorial data. Each successive tree predicts the 
residuals from the previous tree to gradually 
boost the predictive performance of the overall 
model. Although BRT models are complex, they 
can be summarized in ways that give powerful 
ecological insight. BRT has no need for prior 
data transformation or elimination of outliers and 
can fit complex nonlinear relationships. What is 
most important in the ecological perspective, it 
automatically handles the interaction effects 
between predictors (Elith et al. 2008). The BRT 
modelling was done in the statistical software R 
version 2.0.1 using the gbm package (RDC Team 
2012). We used the BRT script provided by 
(Elith et al. 2008).  

In this study we established relationships between 
environmental data, abundance, and biomass of 
G. tigrinus using the BRT modelling. For BRT 
modelling the independent variables were: 
sediment type, sampling depth, water temperature, 
salinity, velocity, exposure to waves, water 
chlorophyll a and water attenuation coefficient 
(Kd). They were regressed to predict the biotic 
patterns. Multiple models were run varying both 
the model learning rate (between 0.1 and 0.001) 
and the number of trees (between 1000 and 
10,000). Then the best performing model was 
selected based on the model predictive power. 

Multivariate data analyses were performed by 
the statistical program “PRIMER” version 6.1.5 
(Clarke and Gorley 2006). Prior to analysis, a zero-
adjusted Bray–Curtis similarity matrix was 
calculated using untransformed abundances. Then 
nonmetric multidimensional scaling (nMDS) was 
used to present visual images of the differences 
in variability among species in faunal assemblages. 

Results  

Macroinvertebrate species in the studied locations 

During surveys of the shallow water habitats of 
the Gulf of Finland in 2010−2011, we recorded 
10 non-native species of macroinvertebrates, 
including 4 species of alien molluscs [New 
Zealand mud snail Potamopyrgus antipodarum 
(Gray, 1843), Conrad's false mussel Mytilopsis 
leucophaeata (Conrad, 1831), softshell clam Mya 
arenaria Linnaeus, 1758 and zebra mussel 
Dreissena polymorpha (Pallas, 1771)] and 6 
species of crustacean invaders [acorn barnacle 
Amphibalanus improvisus (Darwin, 1854); Ponto-
Caspian amphipods Chelicorophium curvispinum 
(Sars, 1895) and Pontogammarus robustoides 
(Sars, 1894); Baikalian amphipod Gmelinoides 
fasciatus (Stebbing, 1899); North-American 
amphipod Gammarus tigrinus Sexton, 1939, and 
grass prawn Palaemon elegans Rathke, 1837].  

Native amphipods were represented by mud 
shrimp Corophium volutator (Pallas, 1766) and 
five species of gammarid amphipods: Gammarus 
zaddachi Sexton, 1912, Gammarus duebeni 
Liljeborg, 1852, Gammarus salinus Spooner, 
1947, Gammarus oceanicus Segerstråle, 1947 
and Gammarus pulex Linnaeus, 1758. Abundances 
of native and non-native amphipods are provided 
in Appendix 2.  

Links between abiotic environment and G. tigrinus 

The abiotic variables studied explained slightly 
over 50% of the variability of G. tigrinus 
abundance and biomass. Exposure to waves was 
by far the most important variable in the BRT 
model followed by average water salinity, water 
transparency (Kd), maximum chlorophyll a and 
average water velocity (Figure 4, 5). Sediment 
type described only a minor proportion in the 
variability of G. tigrinus. The amphipod abundance 
and biomass decreased in a logistic form with 
increasing exposure. Similarly, the reduced salinities 
favoured the invasive amphipod. In contrast, 
increasing water velocity at a site increased both 
abundance and biomass of G. tigrinus. Relationship 
between chlorophyll a and G. tigrinus abundance 
was unimodal with maximum G. tigrinus 
abundance estimated around 10–55 mg Chl a m-3 

and biomass around 10–35 mg Chl a m-3. Above 
and below this range, G. tigrinus abundance 
sharply decreased. 
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Figure 4. “Partial dependence” plots showing the effect of environmental variables on the abundance of G. tigrinus in the Gulf of Finland, 
whilst all other variables are held at their means. The upward tickmarks on x-axis show the frequency of distribution of data along this axis. 
The contribution of particular variable to the model is shown in brackets. The code of sediment types: 1 – sand, 2 – cobble. 

 
The effect of exposure on the abundance and 

biomass of G. tigrinus depended heavily on the 
values of eutrophication-related variables (both 
maximum chlorophyll a and Kd) and the salinity 
level. G. tigrinus population had high abundance 
and biomass at low chlorophyll a when either 
salinity or exposure values were low. Similarly, 
the effects of exposure on G. tigrinus depended 
on water velocity values and highest abundance 
and biomass of G. tigrinus were recorded in the 
areas characterized by low exposure and high 
water velocity (Figure 6).  

Spatial distribution and interaction with other species 

The densest G. tigrinus populations were located 
in the eastern and northeastern parts of the Gulf 
of Finland whereas the species was relatively 
rare in the southwestern parts of the Gulf (Figure 
7; Appendix 2). G. tigrinus could share its 
habitat with other invasive amphipods such as 
Pontogammarus robustoides but in general the 
abundance and biomass of G. tigrinus was lower 
in these habitats compared to areas where  P. robu-
stoides were not found (Figure 7; Appendix 2). 
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Figure 5. “Partial dependence” plots showing the effect of environmental variables on the biomass of G. tigrinus in the Gulf of Finland, 
whilst all other variables are held at their means. The upward tickmarks on x-axis show the frequency of distribution of data along this axis. 
The contribution of particular variable to the model is shown in brackets. The code of sediment types: 1 – sand, 2 – cobble. 

 
The nMDS analysis (Figure 8) showed that the 

distribution range of G. tigrinus was relatively 
broad and similar to those of native gammarids. 
Only G. duebeni occurred primarily close to the 
waterline where other gammarid amphipods were 
rare (Figure 8). Thus, G. tigrinus is exceptional 
among the invasive species as all other invasive 
species in the Gulf of Finland formed two distinct 
groups in terms of their habitat requirement. One 
group consists of the amphipods Gmelinoides 
fasciatus, Pontogammarus robustoides, Chelicoro-
phium curvispinum, the bivalve Dreissena poly-

morpha. The second group consisted of the shrimp 
Palaemon elegans, the cirriped Amphibalanus 
improvisus, and the bivalves Mytilopsis 
leucophaeata and Mya arenaria. G. tigrinus may 
occasionally share habitat with those invasive 
species but currently such habitat overlap was 
negligible in the Gulf of Finland. 

The native gammarid species were found at 
higher abundances and biomasses in the areas 
where G. tigrinus was rare or lacking (Figure 9). 
Without G. tigrinus the abundance of the native 
gammarids   was  980 ± 154 ind m-2  (average ± SE) 
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Figure 6. Three-dimensional partial dependence plots in the BRT model for the abundance (top) and the biomass (bottom) of G. tigrinus in 
the Gulf of Finland. Note how the effect of one variable is dependent on another. 

Figure 7. The abundance of the invasive 
amphipods Gammarus tigrinus and 
Pontogammarus robustoides in the Gulf of 
Finland (exact numbers provided in 
Appendix 2). 
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Figure 8. Non-metric multidimensional scaling (nMDS) plot showing similarities in the variability of abundances among benthic species in 
the Gulf of Finland. All amphipods are marked in bold. All non-indigenous species are marked in red. Blue dots mark the centre of species in 
the nMDS plot. Those species that are close on the figure have similar spatial patterns. The code of species: Ald mod - Alderia modesta, 
Amp imp – Amphibalanus improvisus, Ani vor – Anisus vortex, Ano sp. – Anodonta sp., Ase aqu – Asellus aquaticus, Bat pil – Bathyporeia 
pilosa, Bit ten – Bithynia tentaculata, Cer gla – Cerastoderma glaucum, Che cur – Chelicorophium curvispinum, Chi – Chironomidae, Col – 
Coleoptera, Cor – Corixidae, Cor vol – Corophium volutator, Cya obs – Cyanophthalma obscura, Dip – Diptera, Dre pol – Dreissena 
polymorpha, Ecr ven – Ecrobia ventrosa, Eph – Ephemeroptera, Gal pal – Galba palustris, Gam due – Gammarus duebeni, Gam oce – 
Gammarus oceanicus, Gam pul – Gammarus pulex, Gam sal – Gammarus salinus, Gam zad – Gammarus zaddachi, Gam tig – Gammarus 
tigrinus, Gme fas – Gmelinoides fasciatus, Gyr alb – Gyraulus albus, Gyr cri – Gyraulus crista, Hed div – Hediste diversicolor, Het – 
Heteroptera, Ido bal – Idotea balthica, Ido che – Idotea chelipes, Jae alb – Jaera albifrons, Lep – Lepidoptera, Lep pil – Leptocheirus pilosus, 
Lym sta – Lymnaea stagnalis, Mac bal – Macoma balthica, Mya are – Mya arenaria, Myt leu – Mytilopsis leucophaeta, Myt tro – Mytilus 
trossulus, Odo – Odonata, Oli – Oligochaeta, Pal ads – Palaemon adspersus, Pal ele – Palaemon elegans, Per ulv – Peringia ulvae, Phy fon 
– Physa fontinalis, Pis geo – Piscicola geometra, Pis sp. – Pisidium sp., Pla pla – Planorbis planorbis, Pon rob – Pontogammarus 
robustoides, Pot ant – Potamopyrgus antipodarum, Rad bal – Radix balthica, Rad par – Radix parapsilia, The flu – Theodoxus fluviatilis, Tri 
– Trichoptera, Tur – Turbellaria, Val pis – Valvata piscinalis, Viv viv – Viviparus viviparus. 

 
while with G. tigrinus there were only 308 ± 127 
ind m-2. In the areas already invaded by 
G. tigrinus the abundance of native gammarids 
never reached over 1000 ind m-2. Without 
G. tigrinus, however, values over 2000 ind m-2 

and occasionally even over 5000 ind m-2 were 
recorded (Appendix 2). 

Discussion 

This study identified and tested the relative 
contribution of the key abiotic environmental 
predictors on the abundance and biomass of 
G. tigrinus at basin scale using a fine-scale 
modelling framework. Although correlative in 
nature, the resulting response curves matched 
well with the current understanding on the 
interdependence of abiotic environment and the 

distribution of this invasive amphipod species. 
The models also provided many novel 
ecologically-realistic separate effects and second-
order interactions that can be tested in controlled 
experimental conditions. Potentially, the current 
models can be used to predict the abundance of 
the invasive gammarid under current environmental 
conditions but likely also for a range of human 
stress-gradients and climate change scenarios. 

Often the environment of the large-scale 
ecological niche modelling studies is represented 
only by climate data (temperature and precipitation). 
Such global climate variables were also used by 
Ba et al. (2010) to predict the invasive potential 
of G. tigrinus. However, as seen from recent 
studies, the dynamics of marine benthic populations 
is often uncoupled from the global climate trends 
(e.g.  Veber et al. 2009;  Lauringson  et al. 2012) 



J. Kotta et al.  

328 

  

Figure 9. The abundance of native 
gammarids in the Gulf of Finland 
(exact numbers provided in 
Appendix 2). 

 
due to large variation in the interaction between 
large-scale and small-scale environmental factors 
(Hewitt and Thrush 2009). Thus, it is expected 
that models that rely on global climate variables 
only do not reproduce adequate descriptions of 
distributions at the finer scale. 

Our models showed that the invasive G. tigrinus 
was selective in its environment occupied in the 
Gulf of Finland contrasting to very broad habitat 
range of the species in its native habitats (Steele 
and Steele 1972; Bousfield 1973; Kelly et al. 2006). 
In its native range, G. tigrinus is widespread in 
intertidal and subtidal benthic habitats including 
reeds, algae, hard or soft substratum, and sand 
both in fresh and brackish water (e.g. Steele and 
Steele 1972). In the Gulf of Finland ecosystem, 
however, G. tigrinus is currently abundant only 
in the eastern and northeastern parts of the Gulf. 
These habitats range from sheltered to moderately 
exposed coasts, salinity is low, and eutrophication 
level is moderate-high. Among the bottom 
substrates, mixed sediments prevailed; filamentous 
macroalgae, higher order plants and organic debris 
were plentiful; and visibility was moderate to poor.  

In its native range, G. tigrinus is represented 
by two main cryptic species with 6 genetically 
distinct lineages (Kelly et al. 2006). The population 
introduced to Europe represents only two of 
these lineages (Bulnheim 1985; Kelly et al. 2006). 
This restricted genetic makeup may explain why 
the habitat occupancy of G. tigrinus is narrower 
in the invaded area than in its native range. 

Our expectation that less exposed areas were 
characterised by higher number of G. tigrinus 

was confirmed. This effect was not due to 
seafloor characteristics because contribution of 
the type of sediment did not exceed 1% in the 
BRT models. Thus, G. tigrinus seemingly selected 
less exposed areas by some other attributes e.g. 
the ample presence of organic debris as a food or 
poor visibility (acting as a predatory refuge).  

Our hypothesis that G. tigrinus benefits from 
elevated eutrophication was rejected. Instead, the 
moderate levels of nutrient enrichment most-
favoured G. tigrinus. To a point, increasing nutrient 
levels leads to filamentous macroalgal blooms 
and greater sedimentation of organic material 
(Paalme et al. 2002). This enriched food supply 
usually promotes higher species richness, 
abundances and biomasses of macroinvertebrates 
including those of gammarid amphipods (Edgar et 
al. 1994; Kotta et al. 2000; Kotta and Ólafsson 2003; 
Lauringson and Kotta 2006). The macroalgal 
blooms can also result in the mass development 
of drifting algal mats (Berglund et al. 2003), 
which can accumulate in more sheltered areas 
(Kotta et al. 2008), where they provide a habitat 
and food for mobile macroinvertebrates all the 
year round (Thiel and Watling 1998; Kotta et al. 
2008). Excessive nutrient loading, however, 
results in the intense sedimentation of organic 
matter and overgrowth of sediments by thick 
mats of higher plants and algae, which results in 
severe hypoxia and dramatic changes to the local 
animal communities (Karlson et al. 2002; Conley 
et al. 2011). G. tigrinus tolerates higher levels of 
eutrophication (Grabowski et al. 2007) and oxygen 
depletion than native gammarids and can, therefore, 
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better cope with such adverse conditions 
(Sareyka et al. 2011). This may give the species 
a competitive advantage over native gammarids. 
Nevertheless, an increasing extent and intensity 
of hypoxia may still explain an abrupt decline of 
the abundance and biomass of G. tigrinus in the 
most nutrient-enriched areas of the Gulf of 
Finland. Only in those highly eutrophied areas 
where water exchange is high can G. tigrinus 
maintain high densities.  

We also proposed that the relationship between 
nutrient levels and the abundance and biomass of 
G. tigrinus would be weaker in more exposed 
areas than in sheltered areas. This hypothesis 
was supported in that in areas with low exposure, 
the invasive amphipods occurred in high abundance 
at relatively moderate chlorophyll a values. 
Nevertheless, exposure did not change the 
functional form of the relationship between 
eutrophication and G. tigrinus occurrence but 
acted like a scaling factor by changing overall 
abundance levels. 

We also expected that, owing to its wide 
tolerance, G. tigrinus would be unresponsive to 
changes in salinity. This expectation was rejected; 
the invasive amphipod was much more abundant in 
less saline areas compared to more saline areas. 
However, salinity levels were confounded with 
levels of many variables. For example, the strongest 
effects of exposure and eutrophication were 
observed in less saline areas. Seemingly, G. tigrinus 
prefers salinities between freshwater and 5 but 
the species can be likewise found in the most 
saline parts of the Gulf of Finland, albeit at much 
lower abundances. The model suggests, however, 
that there is a true salinity effect separate from 
those related to the other studied variables. This 
is especially true for the numerical abundance of 
G. tigrinus whereas the amphipod biomass is less 
coupled with separate salinity effects. Thus, 
G. tigrinus tends to have smaller-sized and 
denser populations at lower salinities. The results 
are quite surprising considering increasing 
maintenance energy cost for G. tigrinus with 
decreasing salinity from 20 down to freshwater 
conditions (Normant et al. 2007). The authors of 
this paper asked why G. tigrinus does not inhabit 
α-mesohaline zones (salinity 10−18) but thrive in 
freshwater and oligohaline areas of the Baltic 
Sea. In the light of our study, however, their 
hypotheses to explain the gammarid distribution 
paradox (e.g. strong preference to shallow water 
habitats, unknown interactions with key 
environmental variables, lowest biodiversity i.e. 
invasional resistance at 5−8) seem not very 

likely. Alternatively, Kelly et al. (2006) suggested 
that differences in salinity tolerance among 
genetic lineages may be behind the recent 
patterns of habitat colonization. Specifically, in 
eastern Europe the populations of G. tigrinus 
consist of a mixtures of the two invading clades 
and were characterized by higher genetic 
diversity than source populations (Kelly et al. 
2006). In its native area, different clades do not 
spatially coincide whereas in Europe those 
clades are found at the same sites. Thus, at the 
seascape scale, the genetic diversity of G. tigrinus 
is higher in Europe than in its native area. At the 
broader spatial scales, however, the opposite is 
true as only a few clades are found in Europe. It 
is expected that broader niche space or width and 
better tolerances to adverse environmental 
conditions (including low salinity) would result if 
multiple source populations, each with distinctive 
genetic composition, contributed to the genetic 
structure of founding populations.  

With regards to predators, fish can cause heavy 
mortality on the G. tigrinus population (e.g. 
Kotta et al. 2010). In the turbid environments, 
however, G. tigrinus may escape heavy predation 
if benthivorous fish locate their prey visually. In 
fact, the three spine stickleback Gasterosteus 
aculeatus and the Eurasian perch Perca fluviatilis 
are major predators of gammarid amphipods in 
our study area and both fish species depend on 
vision as their main source of sensory information 
(Kotta et al. 2010; Järv et al. 2011). Thus, even 
relatively small increases in turbidity are expected 
to change predation efficiency of fish on such a 
large and mobile prey as gammarid amphipods 
(Utne-Palm 2002). This may explain why G. 
tigrinus has very high densities at less exposed 
areas where finer sediments are more common 
and thus water transparency is low. In freshwater 
environments, high water turbidity often associated 
with clay substrate is a key characteristic of the 
G. tigrinus habitat (e.g. Grigorovich et al. 2005). 
It would be useful to conduct experiments to 
identify potential threshold value in water 
transparency, below which fish feeding activity 
is limited and therefore the establishment of the 
invasive amphipod is favoured. If such a threshold 
exists, the abatement of eutrophication may 
actually reduce abundance of the invasive G. 
tigrinus in its current range and prevent its 
further spread. 

Based on earlier experimental evidence and 
this study, G. tigrinus seems not to have important 
competitors in the Baltic Sea, except for G. 
duebeni and P. robustoides (Rolbiecki and Normant 
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2005; Grabowski et al. 2006). Our study showed 
that the other amphipods seem competitively 
inferior or neutral to G. tigrinus. We also have 
evidence that interspecific interactions between 
invasive amphipod species vary even within the 
Baltic Sea range. The Ponto-Caspian species 
Pontogammarus robustoides is very invasive in 
the southern Baltic Sea and is known to have 
caused a major decline of the G. tigrinus in this 
ecosystem (Grabowski et al. 2006). Nevertheless, 
in the Gulf of Finland ecosystem P. robustoides 
is limited to very narrow coastal range and in 
these habitats the two invasive species cohabit. 
Surprisingly, this is not due to a more recent 
arrival of P. robustoides into the southern shores 
of the Gulf of Finland. In fact P. robustoides was 
found for the first time in the easternmost Gulf 
of Finland in 1999 (Panov et al. 2003) and only 
in 2006 the species spread into the Estonian 
coastal waters (Herkül et al. 2009). At that time 
G. tigrinus occurred only at very low densities in 
the western Gulf of Finland. During the last 6−8 
years the distribution range of P. robustoides has 
remained almost the same and the species is still 
confined to the limited coastal habitats of the 
eastern Gulf of Finland. On the other hand 
G. tigrinus has spread practically all over the 
Gulf including those sites where P. robustoides 
are found. Seemingly, the spatial limits of 
distribution of P. robustoides in the Gulf of 
Finland are controlled by some unknown abiotic 
or biotic variable giving G. tigrinus a clear 
competitive advantage. Such a dispersal pattern 
also suggests that P. robustoides may not be 
dominant over G. tigrinus in the coming years. 

Our study supported earlier experimental 
evidence (Orav-Kotta et al. 2009; Kotta et al. 
2010; Sareyka et al. 2011) that G. tigrinus is 
competitively superior to the majority of native 
gammarids in the Gulf of Finland. The study also 
suggests that the population of G. tigrinus is still 
in its growth phase in the Gulf of Finland. 
Although the invasive amphipod almost covers 
the whole coastal range of the gulf, some 
favourable habitats are still to be invaded e.g. in 
the southern and eastern parts of the Gulf of 
Finland. Thus, we expect that in a near future 
further decline of the native gammarids is possible. 

To conclude, (1) G. tigrinus is still expanding 
its range in the Gulf of Finland ecosystem; (2) 
the gammarid is more selective in its environment 
compared to its native range; (3) the invasive 
species is competitively superior to the native 
gammarids leading to further decline of the 
native gammarids in the Gulf of Finland ecosystem. 
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